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Sensor Reduction, Estimation, and Control of an
Upper-Limb Exoskeleton

Jianwei Sun1, Yang Shen1, and Jacob Rosen1

Abstract—A multi-degree-of-freedom (multi-DOF) exoskeleton
relies on an array of sensors to communicate its state (e.g.,
positions/orientations) and operator-exoskeleton contact inter-
actions (e.g., forces/torques) to its control system. Although
sensor redundancy is common in biological systems to cope
with uncertainty and partial failure of sensors, in man-made
systems, sensor redundancy increases the overall system’s cost
and control complexity. This study presents a sensor reduction
technique for force/torque (F/T) sensors utilizing a Kalman filter-
based sensor fusion system in the context of admittance control.
The methodology is applied to the EXO-UL8 exoskeleton, which
is a powered, redundant, dual-arm, upper-limb robotic system
with (7 arm + 1 hand) DOFs incorporating three 6-axis F/T
sensors in each arm. Motivated by improving wearability through
minimizing human-exoskeleton contact interfaces, which reduces
spurious contact forces due to joint misalignment; and reducing
cost, the proposed strategy emulates the admittance controller’s
virtual dynamics with only a subset of sensors, resulting in
the physical human-robot interaction feeling the same from
the operator’s perspective. Experimental results indicate that
human-exoskeleton power exchange and actuation stresses of the
operator’s joints, with the proposed strategy on a subset of two
sensors, are comparable to those in the full three-sensor case (p <
0.01). The experiments verify the proposed methodology for the
EXO-UL8, and support the feasibility of operating other Kalman
filter-based sensor fusion systems with fewer sensors without
sacrificing transparency in physical human-robot interaction.

Index Terms—Compliance and Impedance Control, Physical
Human-Robot Interaction, Prosthetics and Exoskeletons, Wear-
able Robotics, Rehabilitation Robotics.

I. INTRODUCTION

IN this paper, a method of sensor reduction is presented for
a force estimation sensor fusion algorithm in the context

of admittance control for the EXO-UL8 exoskeleton [1]–[3].
Force sensing and estimation are prevalent in the field

of exoskeleton [4]–[9] and robotics control [10]–[16]. Force
sensing includes resolving sensor redundancies and finding
optimal sensor placement [8], [10]–[12], whereas force estima-
tion includes sensorless approaches, such as using disturbance
observers [5], [8] or other model-based state estimators/filters
[4], [9], [14]–[16]. These techniques have found applications
in teleoperation [15], [16], exoskeleton control [4]–[9], human-
robot interaction [13], and other applications in which the use
of sensors is limited by feasibility, reliability, or cost.
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Fig. 1. (a) On each arm (right arm shown), the upper and lower force/torque
sensors interface with an operator’s arm via elastic cuff links. The wrist
sensor is embedded into the gripper. (b) Each arm can be analyzed as
a serial manipulator with joints corresponding to those of a human arm:
{θ1, θ2} - shoulder abduction/adduction and flexion/extension, θ3 - shoul-
der interior/exterior rotation, θ4 - elbow flexion/extension, θ5 - forearm
pronation/supination, θ6 - wrist extension/flexion, and θ7 - wrist radial/ulnar
deviation.

Sensorless force estimation, such as in the flying probe of
[14], the exoskeletons of [4], [5], and the quadrocopter of
[13], estimate external contact forces through knowledge of
the system dynamics. Unlike the exoskeletons of [5], [8], [9],
the EXO-UL8 does not have back-driveable joints in order to
achieve higher joint payload capacity. As a result, sensorless
approaches could not be utilized.

Applications in which the use of sensors is limited have
necessitated the exploration of sensor reduction techniques.
These include sensorless approaches, as described above, or
reducing the number of required sensors, which is the focus
of this research. In the latter case, existing literature has
formulated the problem of selecting an optimal subset of
sensors as minimizing some cost function [10]–[12]. While
these approaches typically deal with a large number of sensors
and are concerned with the optimal subset of sensors, our
paper aims to show that different subsets of sensors can be
tuned to yield similar dynamic responses as the full set.

In resolving sensor redundancy, literature has explored sen-
sor fusion techniques such as Kalman filtering [17]–[19], fuzzy
logic approaches [18], [20], Monte Carlo methods [21], and
other weighted sum approaches [2], [8]. Whereas the ARMIN
IV+ of [8] uses a constant weighted sum to combine sensor
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Fig. 2. The cascaded control scheme of the EXO-UL8 operates at 1kHz and consists of a high-level controller, which contains the Kalman filter-based sensor
fusion block and admittance controller, and a low-level controller, which tracks joint-space reference trajectories. Relevant signals are labeled.

inputs, our approach uses a Kalman filter to account for state-
dependency of the sensor fusion gains, as the arm’s ability to
generate force is position-dependent [3].

Many variations of Kalman filtering are utilized in robotic
state estimation and control. [22] implements the Extended
Kalman filter to estimate joint angles from the nonlinear
dynamics of muscle tension control in a redundant muscu-
loskeletal humanoid. [14] implements a modified Kalman filter
with acceleration estimation for a flying probe system. In
[23], the authors utilize the Unscented Kalman filter in pose
estimation to enable backstepping control of a mobile robot. In
our work, we utilize the linear Kalman filter for sensor fusion.

The EXO-UL8 is a dual-arm, powered, redundant, upper-
limb exoskeleton with seven active degrees-of-freedom (DOF)
and one active gripper DOF on each arm [1]–[3] designed
to support research efforts in robot-assisted rehabilitation.
The exoskeleton tracks an operator’s movements through ad-
mittance control in joint-space. The admittance controller is
driven by operator-applied forces that are measured by three
6-axis force/torque sensors (ATI Mini40) located at the upper
arm, lower arm, and wrist, as shown in Fig. 1. Reducing the
number of required sensors in the EXO-UL8 is motivated by:

1) Improved wearability: During donning, a patient’s arm
must pass through each of the elastic cuffs, akin to putting
one’s arm through the sleeve of a sleeved shirt. For
patients with neuromuscular disorders such as coupled
joint movements or muscular spasticity, such a maneuver
is difficult or impossible.

2) Joint alignment: Misalignment of the rotational axes of
the EXO-UL8’s joints with those of anatomical joints
can result in large contact forces to the operator [24].
The absence of a sensor can provide increased scapular
movement freedom so that the operator can actively
correct for joint misalignment.

3) Reduced cost: If fewer sensors can achieve similar per-
formance, then component cost can be lowered.

While existing literature explores optimal sensor placement,
sensor fusion, and sensorless force-estimation and control,
the main contribution of our paper is a Kalman filter tuning
method to emulate the baseline admittance controller virtual
dynamics (based on the full three-sensor case) with only two

of the three sensors, resulting in the interaction feeling the
same from the operator’s perspective.

The rest of the paper is organized as follows: section II
describes the filtering and control strategies of the EXO-UL8,
section III examines the minimum required number of sensors
and the compensation for a missing sensor, and section IV
describes the experimental validation of the proposed method.

II. SYSTEM ARCHITECTURE

A. Cascaded Control Scheme

The EXO-UL8 implements a cascaded control scheme in
which the sensor fusion block combines measured forces into
a torque signal. The torques are then input to the admittance
controller, which generates joint-space trajectories tracked by
proportional-derivative (PD) motor joint controllers. Fig. 2
shows a block diagram of the control architecture.

B. Sensor Torque Mapping and Fusion

The EXO-UL8 was originally designed with three 6-axis
force/torque sensors on each of its two arms: one at the upper
arm (u), one at the lower arm (l), and one integrated into
the wrist assembly (w), as shown in Fig. 1. Each sensor s ∈
{u, l, w} provides a wrench measurement, F bs ∈ R6, in its
body reference frame, as indicated by the b superscript. To
enable compatible operations, each measured wrench F bs is
transformed to the spatial frame, located at the intersection of
the three shoulder axes of rotation, through:

F sps = Ad>
g−1
s (θ)

F bs , (1)

where F sps ∈ R6 expresses the equivalent wrench in the spatial
frame, and Adgs ∈ R6×6 is the corresponding adjoint matrix
for the homogeneous transformation gs ∈ SE(3) from the
spatial frame to the sensor’s body frame. The transformed
wrenches, F sps , are then mapped to joint torques Γs ∈ R7

with the spatial manipulator Jacobian:

Γs = Js(θ)
>F sps . (2)

Note that Ju(θ) 6= Jl(θ) 6= Jw(θ) because the dimensions
are different due to each sensor being located at a different
position along the kinematic chain, as shown in Fig. 1.
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The torque contributions from the sensors are then com-
bined via a linear time-invariant (LTI) sensor fusion system to
yield joint torques Γ̂ ∈ R7 to input to the admittance controller.
The sensor fusion system is represented as:

xΓ[k + 1] = AΓxΓ[k] +BΓ col(Γu[k],Γl[k],Γw[k]), (3)

Γ̂[k] = CΓxΓ[k] +DΓ col(Γu[k],Γl[k],Γw[k]),

where xΓ[k] ∈ RnΓ is the state of the sensor fusion at time
step k, (AΓ, BΓ, CΓ, DΓ) are state-space matrices in minimal
realization, and col(·, . . . , ·) produces a column vector from its
arguments. The sensor fusion system is expressed in discrete-
time to support software implementation.

C. Sensor Fusion via Kalman Filtering
A Kalman filter-based sensor fusion combines the torques

from the sensors (Γu,Γl,Γw) into a single torque estimate
Γ̂. Since the joint torques are generated from human-applied
forces, the exact signal is not known a priori. Therefore, the
process equation for Γ is modeled as a random walk, similar
to the technique used in [1], [13]:

Γ[k + 1] = Γ[k] + (∆t)wΓ[k], (4)

where ∆t is the sampling period, and wΓ[k] ∼ N (0, QΓ),
where QΓ is an empirically tuned covariance matrix. The
torques Γu,Γl,Γw are then treated as measurements with
additive Gaussian noise to the Kalman filter:

z[k] : =

Γu[k]
Γl[k]
Γw[k]

+

wu[k]
wl[k]
ww[k]

 , (5)

=

 I3×3 03×4

I5×5 05×2

I7×7

Γ[k] +

wu[k]
wl[k]
ww[k]

 , (6)

:= HΓ[k] + col(wu[k], wl[k], ww[k]), (7)

where z[k] ∈ R15 is a combined vector of joint torques from
the sensors. wu[k] ∼ N (03×1, Ru), wl[k] ∼ N (05×1, Rl), and
ww[k] ∼ N (07×1, Rw), where Ru ∈ R3×3, Rl ∈ R5×5, and
Rw ∈ R7×7 are the noise covariance matrices corresponding
to the upper, lower, and wrist sensor, respectively. Let Γ̂ ∈ R7

be the minimum mean squared error (MMSE) estimate of Γ,
Pp ∈ R7×7 be the variance of the a priori, Pm ∈ R7×7 be
the variance of the a posteriori, and R := diag(Ru, Rl, Rw).
Then, the update equations for the Kalman filter become:
Initialization:

Γ̂[0] = 07×1, (8)

Pm[0] = (∆t)2QΓ. (9)

A Priori Update:

Pp[k] = Pm[k − 1] + (∆t)2QΓ. (10)

A Posteriori Update:

K[k] := Pp[k]H>(HPp[k]H> +R)−1, (11)

Γ̂[k] = (I−K[k]H)Γ̂[k − 1] +K[k]z[k], (12)

Pm[k] = (I−K[k]H)Pp[k](I−K[k]H)> (13)

+K[k]RK[k]>,

where K[k] ∈ R7×15 is defined as the Kalman gain at time
step k. Note that equation (13) implements the Joseph form
for numerical stability.

The Kalman filter implemented in this form is not time-
invariant, so it cannot be expressed in the form of equation
(3). However, this is not problematic because convergence of
the Kalman filter is guaranteed by (I7×7, H) being detectable
and (I7×7, Q

1/2
Γ ) being stabilizable [25], where I7×7 is the

state transition matrix in equation (4). Then, let P∞ be the
steady-state a posteriori variance calculated from the discrete
algebraic Riccati equation and let K∞ = P∞H

>(HP∞H
>+

R)−1 be the steady-state Kalman gain [19]. The updated
equations become:

Γ̂[k] = (I−K∞H)Γ̂[k − 1] +K∞z[k], (14)

which is a discrete-time, linear time-invariant system.

III. SENSOR REDUCTION

A. Admittance Controller

The estimated joint torques, Γ̂, from the sensor fusion
system are then used to drive a first-order reference-generation
model in joint-space:

τj θ̇
ref
j + θref

j = ajΓ̂j , j ∈ {1, . . . , 7}, (15)

where τj , aj ∈ R, τj > 0, aj > 0 are the time constant and DC
gain of the model for joint j, and θref ∈ R7 is the generated
reference signal to be tracked by the motor controllers. These
constants are experimentally tuned to achieve responsive be-
havior of the EXO-UL8, as qualitatively determined by test
users. In the Laplace domain, each channel of equation (15)
has a pole at s = −τ−1

j , which is stable since τj > 0.
Furthermore, the model can be exactly discretized to:

θref
j [k + 1] = e

−∆t
τj θref

j [k] + aj(1− e
−∆t
τj )Γ̂j [k], (16)

for each joint, j ∈ {1, . . . , 7}. The discretized model ensures
that discretization errors are minimal.

A summary of the control scheme implementation is given
in Procedure 1. The procedure is implemented as an interrupt
handler for a timer with interrupt frequency of 1kHz.

Procedure 1: 1kHz Timer Interrupt Handler

1 θ ← Read joint angles
2 for s ∈ {u, l, w} do
3 F bs ← Read force sensor
4 F sps ← Ad>

g−1
s (θ)

F bs . Eqn (1)

5 Γs ← Js(θ)
>F sps . Eqn (2)

6 KF a priori update . Eqn (10)

7 Γ̂← KF a posteriori update . Eqns (11)-(13)

8 for j ∈ {1, . . . , 7} do
9 θref

j ← Update virtual dynamics . Eqn (16)

10 Send θref to Low-Level Controller
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B. Minimum Number of Sensors

In non-singular configurations of the joint angles, the wrist
Jacobian, Jw(θ), is the only Jacobian that can affect all seven
dimensions of the joint torque vector, Γ̂. For this reason, it
must be included in the control strategy. Additionally, at least
one of the upper or lower sensors must also be present. To
illustrate this requirement, consider the case in which only the
wrist sensor provides the joint torques used by the admittance
controller:

Γ̂ = Γw = Jw(θ)>Fw. (17)

In order for the single sensor to provide enough information
to fully control the exoskeleton, the map between the space
of wrenches (R6) to the space of joint torques (R7) must
be surjective. Due to the limited dimensionality of the space
of wrenches, there does not exist a mapping that satisfies
this requirement. In fact, the wrench can only map to a
six-dimensional subspace in R7, assuming that the Jacobian
does not lose rank from the exoskeleton being in a singular
configuration. The orthogonal complement of the column
space of Jw(θ)> is the left nullspace of Jw(θ)>, or simply
the nullspace of Jw(θ). Since Jw(θ) ∈ R6×7 and has full row
rank, the dimension of its nullspace is one, and corresponds to
the manifold of internal motions on which Jw(θ)θ̇ = 0. This
manifold contains the motions along the swivel angle in which
the wrist maintains its position in end-effector space while the
elbow is free to rotate [3], [26]. The redundancy of the EXO-
UL8 means that the wrist sensor alone cannot provide enough
information, so at least one other sensor must also be present.
Thus, a total of two sensors are utilized.

C. Feasibility of Two Sensors

When two of the 6-axis force/torque sensors are included,
a total of twelve inputs are provided to the exoskeleton to
actuate seven joints. The Kalman filter in the admittance
control scheme serves as a sensor fusion system whose outputs
are estimates of the joint torques. Feasibility of requiring only
two sensors is equivalent to controllability of the Kalman filter
when interpreted as an LTI system. Therefore, if the sensor
fusion system described by equation (14) is controllable, there
exist inputs from the sensors that can drive the torque estimate
to any point in the state-space. The pair (K∞, I −K∞H) is
controllable if and only if its controllabilty matrix is full rank:

C = [K∞ (I−K∞H)K∞ . . . (I−K∞H)6K∞]. (18)

Since the Kalman filter converges, as shown in subsection II-C,
the steady-state Kalman gain, K∞ ∈ R7×15 is necessarily full
rank. The first block column of C is K∞, so the controllability
matrix must already have a column rank of 7. Therefore, the
sensor fusion system is controllable and the inputs from the
two sensors are sufficient to produce any joint torque estimate.

D. Sensor Fusion Tuning to Compensate for Fewer Sensors

The absence of an upper or lower sensor impacts the inter-
action dynamics experienced by the operator; more force may
be required to move the exoskeleton in certain directions. To
ensure that the interaction feels the same from the operator’s
perspective when only two of the three sensors are utilized, the

baseline (full three-sensor case) admittance controller virtual
dynamics must be emulated. This is achieved by tuning the
Kalman filter in either of the reduced-sensor cases to have
the same filter dynamics as in the baseline. In both cases, the
admittance controller receives the same input and generates
the same virtual dynamics. The details of this tuning strategy
are explained in this section.

Let the sensor configurations be denoted as:
(A) All three sensors (upper, lower, wrist),
(B) Lower and wrist sensors only,
(C) Upper and wrist sensors only.
From equation (15), the same joint trajectories are generated
if the Γ̂ output from the Kalman filter remains the same.
Equation (14) shows that the steady-state Kalman gain, K∞,
and the measurement matrix, H , directly affect the filter
dynamics. For the subsequent analysis, let:

Hlw :=

[
I5×5 05×2

I7×7

]
, (19)

which denotes the measurement matrix used to define zlw[k]
in the Kalman filter a posteriori update equations, and corre-
sponds to the case in which the upper sensor is absent (config.
B). Then, to ensure that equation (14) remains the same in
configurations A and B, it is required that:

K∞H = K̃∞Hlw, (20)

where K̃∞ denotes the modified steady-state Kalman gain.
Expanding equation (20), the requirement becomes:

H>
(
HP∞H

> +R
)−1

H

= H>lw
(
HlwP∞H

>
lw +Rlw

)−1
Hlw (21)

where Rlw ∈ R12×12 is the new diagonal measurement
covariance to be determined. Note that the estimation error
covariance, P∞, should be the same in both cases to ensure
that the removal of one sensor does not change the steady-
state performance of the Kalman filter. Then, the objective is
to solve equation (21) for the only unknown, Rlw.

Note that the matrices H and Hlw are related by:

H =

[
I3×3 03×9

I12×12

]
Hlw := EHlw. (22)

Finding an appropriate matrix E is always possible when Hlw

has full row rank, which is a necessary requirement for the
Kalman filter to converge in this case. Then, the left side of
equation (21) becomes:

= H>lwE
> (HP∞H> +R

)−1
EHlw. (23)

By equating the matrices between the H>lw and Hlw terms,
Rlw is solved as:

Rlw =
[
E>

(
HP∞H

> +R
)−1

E
]−1

−HlwP∞H
>
lw. (24)

A similar analysis calculates Ruw ∈ R10×10 for configuration
C. Equation (24) computes the necessary measurement noise
covariance matrix to achieve equal filter dynamics to the
nominal case, despite the absence of a sensor.
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Fig. 3. The theoretical normalized sensor contributions to the estimated
torque are determined by normalizing the reciprocal of the variance values
for each sensor with the sum of the reciprocal variance values in each sensor
configuration. Joints located farther down the kinematic chain are affected by
fewer sensors, as in the case of Joints 4 − 7. In all cases, the removal of a
sensor redistributes the relative contributions of the remaining sensors.

When the Kalman filter reaches steady state, the contribu-
tion of each measurement to the estimate is proportional to
the inverse of the associated noise variance. Thus, to visualize
how sensor contributions change, it suffices to consider how
the noise variances in Rlw (config. B) and Ruw (config. C)
differ from those in Ru, Rl, Rw (config. A). For example, the
contribution of the lower sensor to joint 1 in config. A is:

1/Rl(1, 1)

1/Ru(1, 1) + 1/Rl(1, 1) + 1/Rw(1, 1)
≈ 0.256. (25)

However, when the upper sensor is removed (config. B), the
contribution of the lower sensor becomes:

1/Rlw(1, 1)

1/Rlw(1, 1) + 1/Rlw(6, 6)
≈ 0.767. (26)

The increase indicates that when the upper sensor is removed,
the Kalman filter places greater emphasis on the measurement
of the lower sensor in order to yield the same dynamics. Fig.
3 summarizes the distributions of sensor contributions in each
of the three configurations.

IV. EXPERIMENTS

All experiments in this study were performed with a healthy
right-handed participant (male, 25-years-old) following an ap-
proved Institutional Review Board protocol (IRB #18-00766).

A. Performance Metrics
1) NASA Task Load Index (NASA-TLX): The term trans-

parency is a measure of the exoskeleton’s tracking perfor-
mance to an operator’s movements. Although it can be quanti-
fied using the metrics defined below, a qualitative assessment
of ease of control and wearability, as provided by the operator,
is also an important indication of performance. To this end,
the NASA-TLX survey [27] was utilized to assess the quality
of the interaction and ease of donning for each of the three
sensor configurations.

Fig. 4. (a) A subject wears the exoskeleton to accomplish the trajectory-
following tasks; (b) Planned trajectory.

2) Power Exchange: In an ideal interaction, no force occurs
at the physical human-exoskeleton interface (sensor locations).
During motion, this is equivalent to zero mechanical power ex-
changed. Therefore, the power exchanged through the sensors
can quantify the transparency of the interaction; the smaller the
power exchanged, the more ideal the interaction. Let vsps ∈ R6

be the linear and angular velocity of sensor s expressed in
the spatial frame. Then the instantaneous power exchange for
sensor s is the inner product between the wrench and velocity:
Ps(t) := 〈F sps (t), vsps (t)〉. The mean power exchange over an
interval t ∈ [0, T ] is then:

P avg
s :=

1

T

∫ T

0

〈F sps (τ), vsps (τ)〉dτ. (27)

3) Actuation Stress: As another metric for transparency,
the actuation stress is defined as a normalization of the effort
contributed by each joint in the operator’s arm during motion.
The less torque each joint has to produce relative to its limit,
the lower the actuation stress. Quantitatively, the actuation
stress for joint j ∈ {1, . . . , 7} is defined as:

Sj(t) :=
|Γ̂j(t)|
Γmax
j

× 100%, (28)

where Γ̂j(t) is the estimated torque from the Kalman filter,
and Γmax

j is the max joint torque that a human arm is able
to exert. Table I shows typical anatomical values for Γmax

j

[28]. Note that the torque limits are direction-dependent due
to differences in concentric and eccentric muscle contractions.

TABLE I
DIRECTION-DEPENDENT JOINT TORQUE LIMITS

Joint Positive Limit (Nm) Negative Limit (Nm)

Flexion: 13.13 Extension: 8.90
Shoulder Adduction: 14.49 Abduction: 15.62

Internal Rotation: 11.59 External Rotation: 11.63
Elbow Flexion: 10.75 Extension: 8.76

Pronation: 3.39 Supination: 1.42
Wrist Extension: 2.11 Flexion: 1.55

Radial Deviation: 2.67 Ulnar Deviation: 1.98



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2021

0 5 10 15 20
-3

-2

-1

0

1

2

3

0 5 10 15 20
-3

-2

-1

0

1

2

3

0 5 10 15 20
-3

-2

-1

0

1

2

3

0 5 10 15 20
-3

-2

-1

0

1

2

3

0 5 10 15 20
-3

-2

-1

0

1

2

3

0 5 10 15 20
-3

-2

-1

0

1

2

3

Fig. 5. A sample 20 second duration data fusion time-series is shown for joint 1 for the three sensor configuration cases. The three plots in the top row
show the torque measurements Γs from equation (2) for the three sensors in the three configurations. The bottom row shows the corresponding sensor fusion
outputs Γ̂. The torque measurements are also combined in a weighted sum with the normalized contribution values from Fig. 3. The estimated torques output
from the sensor fusion algorithm shows strong agreement with the expected results based on the compensated sensor noise covariance matrix in equation
(24). The differences of the signals is also shown, and quantified by its RMS value. The small magnitudes of errors indicate that the analysis based on the
steady-state Kalman filter in equation (14) is valid for the time-varying filter.

B. Experimental Setup

A reaching trajectory, as shown in Fig. 4, is used to assess
the three sensor configurations. For configurations B and C, the
attachment cuff for the unused sensor was also detached. As
operator-exoskeleton force exchange occurs via the attachment
cuffs, without a sensor to quantify the interaction forces, local
dynamics may not be accurately captured, and may conse-
quently harm transparency. Additionally, one of the primary
motivators for removing sensors was to improve wearability
by reducing the number of attachment cuffs that an operator’s
arm has to pass through to donn the exoskeleton.

The target trajectory in Cartesian space is designed to
exercise a large range of motion. Physical markers (15 cm
apart from each other) delineate the trajectory in front of
the exoskeleton as shown in Fig. 4. The plane of the targets
is located 75 cm in front of the operator, at a height at
which the operator’s outstretched arm is perpendicular to the
operator’s body when touching the topmost target. A 5 cm
rubber pointer at the end-effector is used to make contact
with the targets. To ensure comparable timescales across all
experimental trials, the subject is given 2 seconds to complete
each segment of the trajectory without stopping, for a total
of 8 × 2 (forward and back) segments. A metronome with a
2 second period is used to pace the experiment. The subject
also wears short-sleeved clothing to prevent inaccurate sensor
readings caused by nonlinear deformation of clothing. Prior to
each trial, the subject is given 3 minutes to become familiar
with the operation of the exoskeleton. A total of 10 trials for
each sensor configuration is carried out to ensure the statistical
significance of results.

C. Results and Discussion

1) Qualitative Assessment: The NASA-TLX assessment for
the three sensor configurations is shown in Table II. A lower
number is favorable for all metrics except for Performance.
The numbers in parentheses for configuration B and configu-
ration C indicate the change from the corresponding task load
in configuration A, which serves as the baseline. Qualitative
assessment from the subject indicates little change in terms
of exoskeleton operation and wearability, which is the desired
result. However, configuration B indicates a slight increase
in operational difficulty, likely due to more inaccuracies in
estimating the torques of the shoulder joints as the closest
sensor (upper) is removed in configuration B. This sensing
limitation is also evident in the quantitative results described
in the subsequent sections.

TABLE II
NASA-TLX ASSESSMENT FOR EACH SENSOR CONFIGURATION

Better Scale (1 - 20) Config. A Config. B Config. C
↓ Mental Demand 5 5 5
↓ Physical Demand 7 8 (+1) 6 (-1)
↓ Temporal Demand 10 11 (+1) 10
↑ Performance 5 6 (+1) 5
↓ Effort 7 8 (+1) 7
↓ Frustration 5 5 5

2) Sensor Contribution: Fig. 5 shows experimental data for
the three sensor configurations for joint 1. The top row plots
the joint torques converted from the sensor readings (equation
(5)). The bottom row shows the output of the time-varying
Kalman filter and a weighted sum of the torques from the first
column using the theoretical contributions in Fig. 3. These
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Fig. 6. End-effector trajectories in the plane of the target pattern for the three
sensor configurations. Trajectories are overlayed onto the target pattern shown
in Fig. 4. Each of the three configurations allows for satisfactory performance
in enabling the operator to follow the target pattern.

Fig. 7. The columns show the power exchange for configurations A, B, and
C (left to right). Uncompensated (Uncp.) refers to the sensor configuration
applied but without re-tuning the Kalman filter; i.e., the filter operates under
the assumption that all sensors are present, even though a sensor is physically
removed. On the other hand, compensated (Cp.) refers to tuning the filter’s
noise covariance matrices according to equation (24). Results indicate that
after tuning, average power exchange decreases (p < 0.01), indicative of
more transparent human-exoskeleton interaction.

were plotted together to show strong agreement, which indi-
cates convergence of the Kalman filter. Demonstrating that the
time-varying filter achieves expected results with experimental
data validates the steady-state Kalman filter assumption used
in calculating the theoretical sensor contributions of Fig. 3.

The bottom row of Fig. 5 also shows the error and its root-
mean-square (RMS) to quantify the disagreement between
the expected filter output and measured filter output. While
configuration C shows agreement to the baseline (config. A)
in terms of error RMS, configuration B shows a larger error,
which agrees with the qualitative assessment. This may be
caused by the removal of the closest sensor to joint 1 (upper
sensor in configuration B). The lower and wrist sensors are
located farther along the kinematic chain than the upper sensor,
so their accurate estimation of the torque on joint 1, as
compared to that of the upper sensor, is affected by a greater
number of intermediate joints.

3) Power Exchange: Sample end-effector trajectories are
shown in Fig. 6. Mean power exchange for the trials are
computed with equation (27) and represented by the box-and-

Fig. 8. Actuation stresses for the three sensor configurations show that
compensation (re-tuning the Kalman filter) results in closer values to the
baseline (config. A).

whisker plots in Fig. 7. Experimental results show that the
compensated Kalman filters resulted in lower power exchange
as compared to the uncompensated cases (p < 0.01). Statisti-
cal significance of the power exchange results was evaluated
using the two-sample t-test. The null hypothesis for each
sensor in configurations B and C was that the power exchange
distributions of the compensated and uncompensated cases had
equal mean but unknown variance. The alternative hypothesis
was that the distributions had unequal means. In all four cases
(B - lower, B - wrist, C - upper, C - wrist), the p-values were
less than 0.01, with the largest being p = 0.0089 for the wrist
sensor in configuration C, indicating that re-tuning the Kalman
filter was statistically significant in improving transparency,
when measured with the power exchange metric.

In configuration B, the mean power exchange of the com-
pensated case closely matched that of the baseline, albeit with
more variance. This is likely caused by the same limitation
evident in the NASA-TLX qualitative assessment of Table. II
and error RMS of Fig. 5: the removal of the upper sensor
places more emphasis on the lower sensor to estimate torques
for the shoulder joints (1-3), which may introduce additional
uncertainties as there are now more intermediate joints be-
tween the shoulder and its closest sensor (lower).

In configuration C, the power exchange in the compensated
case is higher than in the baseline. Since the lower and wrist
sensors are only 12.5 cm apart, the absence of the lower
sensor and its attachment cuff may cause the full mass of
the operator’s forearm to rest on only the wrist attachment,
resulting in higher sensor readings. This anomaly is not present
in configuration B (upper sensor absent) because the mass of
the operator’s upper arm is supported by their shoulder and
does not rest on the upper sensor. With the upper sensor absent,
the compensated cases match more closely with the baseline.

4) Actuation Stress: The actuation stresses are computed
with equation (28), averaged across the trials, and shown in
Fig. 8. Between the compensated and uncompensated cases,
all joints except for joint 2 show a lower actuation stress when
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the remaining sensors are re-tuned according to section III-D,
which agrees with the power exchange results. The discrep-
ancy for configuration C is likely caused by the redistribution
of the forearm’s mass as previously described in the Power
Exchange subsection. In both configurations, the compensated
cases show closer agreement with the baseline configuration
in which all sensors are present.

V. CONCLUSION

This study proposed a tuning method for removing sensors
in a Kalman filter-based sensor fusion system in which any
reasonable subset of sensors yields the same filter dynamics as
with the full set of sensors. The dynamical impact of operating
with a subset of sensors without tuning was demonstrated
experimentally, which motivates the need for a systematic
tuning strategy. The proposed method was verified on the
EXO-UL8 exoskeleton where the output of the Kalman filter
drove an admittance controller. The tuning method was applied
to two different sensor configurations (configs. B and C),
and retained similar performance as the original full set of
sensors (config. A). Experiments performed with the EXO-
UL8 quantified actual performance by calculating operator-
exoskeleton power exchange and actuation stress. Results
agree with theoretical expectations and support the feasibility
and utility of the method.

A limitation of the method arises when sensors are located
kinematically far from the joints whose torque are being
estimated, such as with joint 1 in configuration B. Qualitative
and quantitative assessments indicate a decrease in operator-
exoskeleton transparency due to inaccuracies introduced by
more intermediate joints. This limitation may be further
studied by quantifying transparency as a function of sensor
placement, and then implementing the optimal placement.

The proposed sensor reduction method could be applied to
any physical system that implements a Kalman filter-based
sensor fusion strategy, which is pervasive in the field of
robotics. For future work, applying the tuning method to
other robotic devices and systems using heterogeneous sensors
would broaden the utility of the method. Specifically in the
context of the EXO-UL8, further work may be done to explore
sensor reduction in bimanual operation, or comparison to other
force sensing strategies in the literature.
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